Département Enveloppe et Revêtements Division HygroThermique des Ouvrages N° affaire: 10-070

Le 27 Octobre 2010

Réf. DER/HTO 2010-290-BB/LS

CALCUL DES COEFFICIENTS DE TRANSMISSION SURFACIQUE DE BLOCS ISOLANTS :

B35, B37.5, B40, B45 ET B50

Version 1

Demandeur de l'étude :

FIXOLITE 170 rue Vandervelde B-6296 THIMEON Belgique

Auteur *	Approbateur	Vérificateur(s)
B. BUSSON	S. FARKH	L. SARRAZIN

* Tél.: 01.64.68.87.66

La reproduction de ce rapport d'étude n'est autorisée que sous la forme de fac-similé photographique intégral, sauf accord particulier du CSTB.

Ce rapport d'étude comporte 11 pages dont 4 pages d'annexes.

CONTENU

I.	OBJECTIF DE L'ETUDE				
II.	DESCRIPTION DU PROCEDE				
III.	METHODOLOGIE	4			
	III.1 Principe	4			
	III.2 Règles de calcul	4			
	III.3 Hypothèses	4			
	III.3.1 Géométrie				
	III.3.2 Matériaux	4			
	III.3.3 Conditions aux limites	4			
	III.4 Formules	5			
IV.	RESULTATS				

I. OBJECTIF DE L'ETUDE

L'objectif de cette étude est de calculer pour le compte de la société FIXOLITE, les coefficients de transmission surfacique U_c de blocs de coffrage isolant B35, B37.5, B40, B45 ET B50.

Les éléments techniques servant de base pour l'étude ont été fournis par la société FIXOLITE et sont reportés en annexe de ce rapport.

Cette étude ne traite que de l'aspect thermique du procédé et ne préjuge en rien de son aptitude à l'emploi.

II. DESCRIPTION DU PROCEDE

On étudie des blocs de coffrage pour différentes conductivités thermiques de l'isolant et du bois ciment.

Modèles	Ep. bloc	Ep. Bois ciment ext.	Ep. Béton	Ep. Isolant	Ep. Bois ciment int.	Ep. Isolant
B35	35 cm	4 cm		5,5 cm	3,5 cm	10 cm
B37.5	37,5 cm	4 cm		5,5 cm	3,5 cm	12,5 cm
B40	40 cm	4 cm	12 cm	5,5 cm	3,5 cm	15 cm
B45	45 cm	4 cm		5,5 cm	3,5 cm	20 cm
B50	50 cm	4 cm		5,5 cm	3,5 cm	25 cm
B35	35 cm	4 cm		3,5 cm	3,5 cm	10 cm
B37.5	37,5 cm	4 cm		3,5 cm	3,5 cm	12,5 cm
B40	40 cm	4 cm	14 cm	3,5 cm	3,5 cm	15 cm
B45	45 cm	4 cm		3,5 cm	3,5 cm	20 cm
B50	50 cm	4 cm		3,5 cm	3,5 cm	25 cm
B37.5	37,5 cm	4 cm		5,5 cm	3,5 cm	7,5 cm
B40	40 cm	4 cm	17 om	5,5 cm	3,5 cm	10 cm
B45	45 cm	4 cm	17 cm	5,5 cm	3,5 cm	15 cm
B50	50 cm	4 cm		5,5 cm	3,5 cm	20 cm

Tableau 2 – Composition géométrique blocs

III. METHODOLOGIE

III.1 Principe

La détermination des caractéristiques thermiques des composants d'enveloppe repose sur le calcul par éléments finis d'un flux de chaleur transmis à travers des modèles géométriques 3D.

Le coefficient de transmission surfacique du bloc en partie courante, s'obtient en divisant le flux traversant l'élément répétitif 3D du mur par sa surface et par la différence de température entre les deux ambiances.

III.2 Règles de calcul

Toutes les simulations ainsi que l'exploitation des résultats ont été effectuées conformément aux règles Th-Bât édition 2007.

III.3 Hypothèses

III.3.1 Géométrie

Concernant les modélisations de ponts thermiques, les parois ont été simplifiées pour ne représenter que les couches homogènes constituant les blocs Fixolite. Les formes arrondies ont été remplacées par des formes rectangulaires de surface équivalente.

III.3.2 Matériaux

Matériau	Conductivité thermique W/(m.K)	Source	
Béton	2	Th-Bât édition 2007.	
Bois ciment	0,103 – 0,12	(*)	
Isolant du bloc	0,030 - 0,032	\(\begin{align*}(\cdot) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	

^(*) Valeur fournie par la société FIXOLITE, utilisée ici à titre indicatif. Toute valeur retenue est à justifier conformément aux règles Th-U.

Tableau 2 – Conductivités thermiques des matériaux

III.3.3 Conditions aux limites

Conditions aux limites	Température d'ambiance (°C)	Coefficient d'échange (W/m².K)
Ambiance extérieure	0	25
Ambiance intérieure avec flux horizontal	20	7,7

Tableau 3 – Conditions aux limites

III.4 Formules

Le coefficient de transmission surfacique U_{c} du bloc en partie courante se calcule d'après la formule suivante :

$$U_c = \frac{\Phi_T - \Phi_{spt}}{\Lambda T \cdot L \times H} \quad \text{en 3D}$$

οù

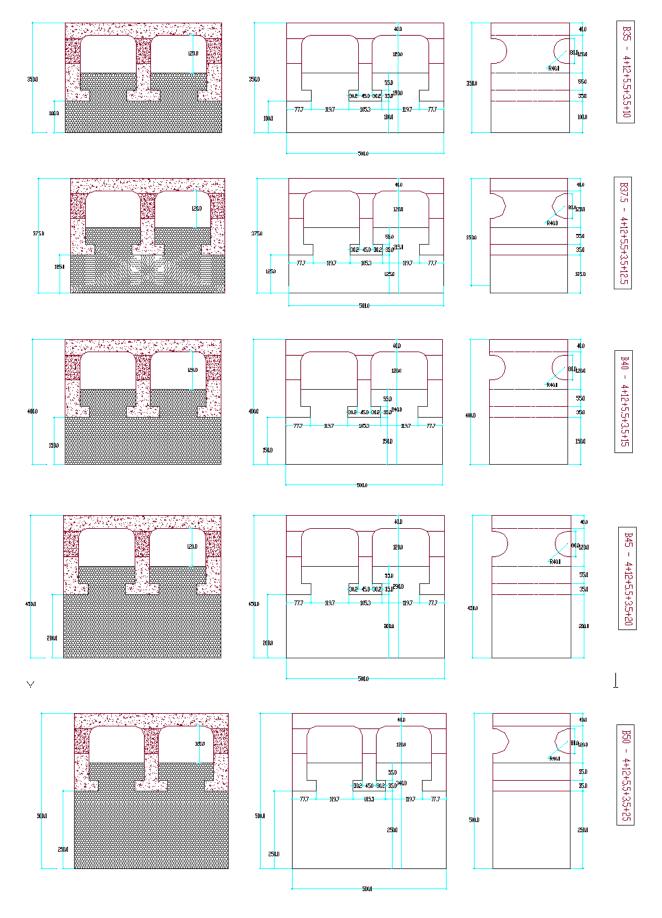
- $oldsymbol{U}_c$ est le coefficient de transmission surfacique du bloc de en partie courante exprimé en W/m.K,
- Φ_T est le flux total traversant le modèle 3 D et obtenu par calcul numérique exprimé en W,
- Φ_{spt} est le flux traversant le modèle et obtenu par calcul numérique lorsque l'effet du pont thermique est annulé exprimé en W,
- ΔT est la différence de température entre les deux ambiances chaude et froide, exprimée en K,
- L est la longueur du modèle, exprimée en m.
- **H** est la hauteur du modèle, exprimée en m.

IV. RESULTATS

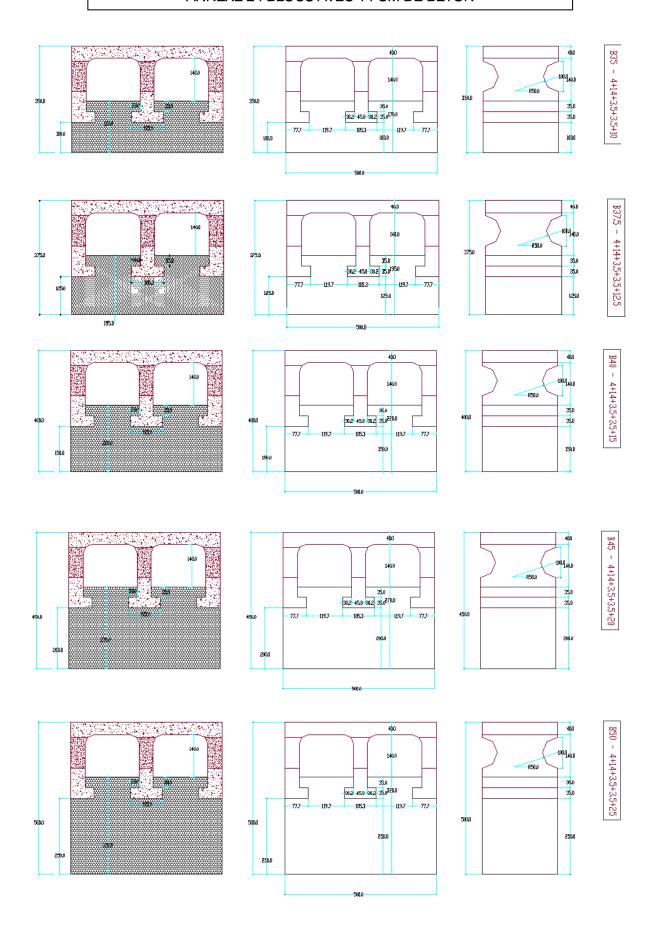
Les résultats ci-dessous ont été obtenus à partir des hypothèses du paragraphe III.3.

Modèles de bloc	Epaisseur de béton	Conductivité thermique du bois ciment en W/m.K	Coefficient U _c W/(m².K)		
			λ _{isolant} =31 mW/m.K	$\lambda_{isolant}$ =32 mW/m.K	
B35			0,17	0,18	
B37.5		12 cm	0,15	0,16	
B40	12 cm		0,13	0,14	
B45			0,11	0,11	
B50			0,09	0,10	
B35	14 cm		0,18	0,19	
B37.5		14 cm	0.102	0,16	0,17
B40			0,103	0,14	0,15
B45				0,11	0,12
B50			0,10	0,10	
B37.5	- 17 cm		0,20	0,21	
B40			0,17	0,18	
B45			0,13	0,14	
B50			0,11	0,11	

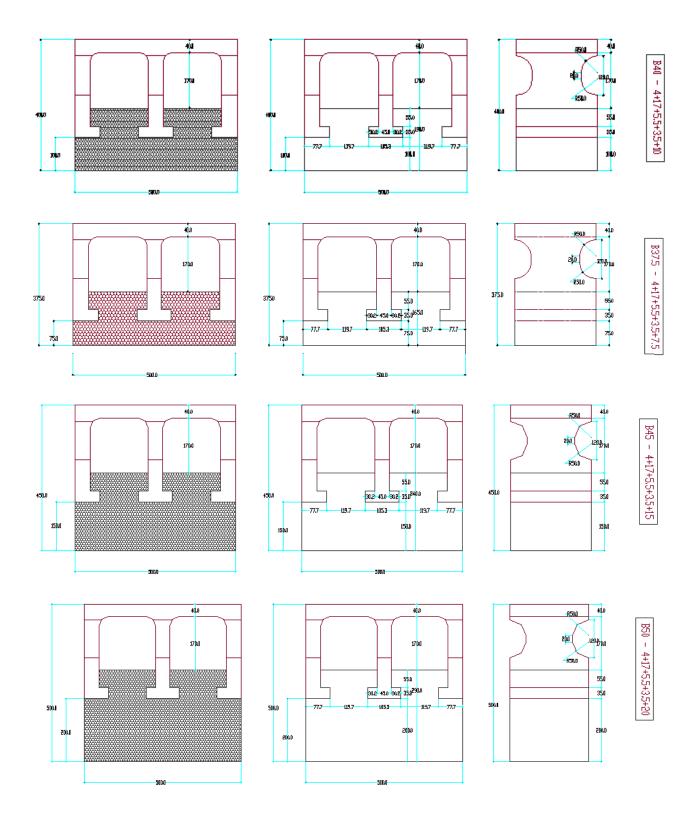
Modèles de bloc	Epaisseur de béton	Conductivité thermique du bois ciment en W/m.K	Coefficient U _c W/(m².K)		
			λ _{isolant} =31 mW/m.K	$\lambda_{isolant}$ =32 mW/m.K	
B35		12 cm	0,18	0,19	
B37.5			0,15	0,16	
B40	12 cm		0,14	0,14	
B45				0,11	0,12
B50		0,12 14 cm	0,09	0,10	
B35	14 cm		0,19	0,20	
B37.5			0,16	0,17	
B40			0,14	0,15	
B45			0,12	0,12	
B50			0,10	0,10	
B37.5			0,20	0,21	
B40		17 cm	0,17	0,18	
B45			0,14	0,14	
B50				0,11	0,12


 $\label{eq:local_condition} \begin{table} \textbf{Tableau 5} - \text{Coefficients de transmission surfacique U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction de la conductivité thermique de l'isolant U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction de la conductivité thermique de l'isolant U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction de la conductivité thermique de l'isolant U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction de la conductivité thermique de l'isolant U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction de la conductivité thermique de l'isolant U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction de la conductivité thermique de l'isolant U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction de la conductivité thermique de l'isolant U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction de la conductivité thermique de l'isolant U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction de la conductivité thermique de l'isolant U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment ($\lambda = 0,12$ W/m.K) en fonction U_{c} des blocs en bois ciment$

V. ANNEXES



ANNEXE 1: BLOCS AVEC 12 CM DE BETON



ANNEXE 2: BLOCS AVEC 14 CM DE BETON

ANNEXE 3: BLOCS AVEC 17 CM DE BETON

